On some constants in simultaneous approximation

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On some constants in approximation by Bernstein operators

We estimate the constants sup x∈(0,1) sup f∈C[0,1]\Π1 |Bn(f,x)−f(x)| ω2 f, x(1−x) n and inf x∈(0,1) sup f∈C[0,1]\Π1 |Bn(f,x)−f(x)| ω2 f, x(1−x) n , where Bn is the Bernstein operator of degree n and ω2 is the second order modulus of continuity. 2000 Mathematical Subject Classification: 41A36, 41A10, 41A25,

متن کامل

BEST SIMULTANEOUS APPROXIMATION IN FUZZY NORMED SPACES

The main purpose of this paper is to consider the t-best simultaneousapproximation in fuzzy normed spaces. We develop the theory of t-bestsimultaneous approximation in quotient spaces. Then, we discuss the relationshipin t-proximinality and t-Chebyshevity of a given space and its quotientspace.

متن کامل

On simultaneous approximation for some modified Bernstein-type operators

for n ≥ α, where α, β are integers satisfying α ≥ β ≥ 0 and In ⊆ {0,1,2, . . . ,n} is a certain index set. For α = β = 0, In = {0}, this definition reduces to the BernsteinDurrmeyer operators, which were first studied by Derriennic [3]. Also if α = β = 1, In = {0}, we obtain the recently introduced sequence of Gupta and Maheshwari [4], that is, Mn,1,1(f ,x)≡ Pn(f ,x) which is defined as Pn(f ,x...

متن کامل

Best p-Simultaneous Approximation in Some Metric Space

Let X be a Banach space, (I, μ) be a finite measure space, and Φ be an increasing subadditive continuous function on [0,+∞) with Φ(0) = 0. In the present paper, we discuss the best p-simultaneous approximation of L(I,G) in L(I,X) where G is a closed subspace of X .

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Journal of Mathematics and Mathematical Sciences

سال: 1995

ISSN: 0161-1712,1687-0425

DOI: 10.1155/s0161171295000342